Network reliability evaluation by the Ahmad
method !

Héctor Cancelast Gerardo Rubino® Maria E. Urquhart t
cancela@fing.edu.uy rubino@irisa.fr urquhart@fing.edu.uy

§ Equipe MODEL, IRISA/INRIA, Rennes, France

T Inv. Operativa, PeDeCiBa Informdtica, Instituto de Computacion, Facultad de Ingenieria,
Unwversidad de la Republica, Montevideo, Uruguay

1 ENST Bretagne, Rennes, France

Abstract

In the evaluation of the capacity of a communication network architecture to resist
to the possible failures of its components, several reliability metrics are currently used.
We consider the K-terminal reliability measure Ry, i.e. the probability of successful
communication between nodes in some subset K of the network node-set.

The exact evaluation of this parameter is in general a very costly task since it belongs
to the NP-hard complexity family. In this paper, we consider an algorithm proposed
by Ahmad for the special case R, (source-terminal reliability) which has the advantage
of using a small amount of memory. The main idea is to construct a partition of the
network working states set in terms of events which we shall call branches.

We develop an extension of this algorithm by adapting the definition of the partition
to the general Ry case, and we present some computational results showing the interest
of this evaluation method.

Key words — Network reliability evaluation.

1 Introduction

Consider a communication network G where nodes are perfect and links fail randomly and
independently. We consider G = (V,£) to be an undirected graph, connected and without
loops; the node set V corresponds to the nodes of the network, and the edge set £ corresponds
to the links. When the link failure probabilities are known, the success of communication

between nodes in some fixed subset I of the node-set is a random event. The probability

1This work has been funded by BID/Conicyt Project Nb. 153 and by the ECOS French-Uruguayan
scientific cooperation program, Action U93E03.

327

Ry of this event is usually called the /C-terminal reliability. The problem of its evaluation
has received considerable attention from the research community (see [LS86] and [Rub94] for
many references). One of the reasons is that in the general case, this problem is NP-hard
[Bal86].

Depending on the choice of the set I, we have different reliability metrics. The most
used ones are source-terminal reliability R,; where s and ¢ are two fixed nodes of V, and all-
terminal reliability Ry.The Ahmad method for R, evaluation was introduced in [Ahm82],
and some improvements were presented in [AJ87] and [MR88]. In this work, we describe this
method for Rx evaluation, with general XK.

This work is organized as follows. Some notations and definitions are introduced in
Section 2. In Section 3 we give the description of the Ahmad algorithm for the evaluation of

Ry. In Section 4 we present some computational results and some conclusions.

2 Global Notations and Definitions

Let us resume in this section the principal notations.

e G = (V,E): the analyzed undirected network (graph) topology, with V = {1,...,n},

the network node-set, and £ = {es, ..., en}, the network link-set;

e JC C V: the terminals set; that is the subset of nodes that must communicate with each

other to consider the system (network) to be operational;

X = (@1,...,%m): the random network state vector, where z. is the binary random

variable “state of link e in G”, defined by

| 1 if link e is up (operational),
“e= 1 0 iflink e is down (failed);

re: the elementary reliability of link e, that is, r. = P (z. = 1),

®: the structure function associated with the IC-terminal reliability measure;

328

o ®(X) the binary random variable “state of network G”, that is;

5(X) = 1 if the graph deduced from G by removing each failed link in X is K-connected,
| 0 otherwise; '

o Rx =P (®(X)=1) the K-terminal reliability parameter of network G;

e A K-tree (also called Steiner tree) is a minimal set of components (links) which connect

all nodes in K

3 Basic description of the Ahmad method

The basic idea behind the Ahmad method comes from the work [Ahm82]. In this report, we
will follow the description given in [MR88], where an improved version was given, which does
not need the generation of any intermediate list of events.

We want to compute the reliability R of the connection between the nodes of K under
the assumptions of independence between the behavior of the different lines.

Let us denote by Cx the event “the graph is K-connected”; we have then Rx = P (Cx)
If {m1,...,mmp} is the set of K-trees and Pj denotes the event: “every link in the & K-tree
is working correctly”, then Cx = Ui <k<prp Pr-

Observe that the probability of events Py is immediate from the independence hypothesis
but that, in general, the events { P, P,, ...} are not disjoint, so the above formula is not very
useful to compute the reliability Ry.

Much of the considerable amount of work in the family of direct approaches to reliability
computation has been inspired with the idea of constructing a partition of the event Cy, that
is finding a family of events {By} such that: Cx = U, Bx with B, N B; = 0, Vi # j. With

such a partition, we will be able to compute Ry using the following equation:
Re =P (Cx) = >_P (B (1)
k

The Ahmad method is based on this idea. It has the property of constructing the par-
tition {Bj} simultaneously with the exploration of the graph without calculating the list
{P,,P;,...} and in this way, it needs a small amount of memory. In particular, from the

329

degrees of the nodes, the total amount of space can be statistically calculated and then
allocated.

We will construct a partition of C’)C in terms of events which we shall call branches. The
branches will be denoted by sequences of symbols taken from the alphabet ¥V U GV UV with
VA {Z/z € V} and GV o {9z/z € V}. For instance, if V = {1,2,3} we have V = {1,2,3}
and GV = {¢1, 92, ¢3}.

The algorithm consists of moving continuously a single branch, which is transformed
from time to time into an element of the partition, i.e. a fintshed branch. At this point, the
probability of this event is computed and accumulated, and the process continues. When the
algorithm ends, the set of all the finished branches generated is a partition of Cy.

Any branch, finished or not, will be represented by a sequence b = (b1, by, ..., by) with
the following meaning. Let us denote by z, vy, ... the points of V. The elements of V will be
denoted by z, 7, ... and those of GV by gz, gy,... where z, y,... € V. The first element is
by = s, where s € IC is chosen arbitrarily. The consecutive sequence (z,y) of V X V means
that z and y are adjacent nodes and that in the event b the event “link (z,y) is working” is
realized. The consecutive sequence (gz,y) has exactly the same meaning (we will see later
the use of the prefix g). A sequence of consecutive symbols of the form (X,7;,%,,..-,¥)
where X = z or X = gz means that z is adjacent to v1,¥2,...,yr and that in the event
b, link (z,y;) does not work, for [= 1,2,..., L. If the subsequence is (X,¥,,,...,¥5, %)
where X means either « or gz then the meaning is as before with, in addition, Z = z € V
or Z = gz € GV and in the first case, z and z are adjacent and link (z, z) works. A finished
branch is a branch in which all nodes in I are present. As a consequence of the method,
in every branch b = (b1,bs,...,bg), if A > 1 then by # s (but the case b, = gs is possible).
Given a finished branch b, its probability is given by:

P(b) = II Te; - I a-r) (2)
e; Eworking(b) e; € failed(b)
where working(b) and failed(b) are the sets of links defined respectively as working or down
in b according to the rules defining the meaning of the representation.
The algorithm starts with the initial branch b = (s), where s is an arbitrarily chosen node

330

such that s € K. The main loop consists of looking at the last symbol of b and carrying out
some actions depending on three possible cases. We will now describe in detail the algorithm.

For any branch b, let us define the following notation.

e by: the last element of b (H is the size of b)

y if by, = gy

def

@ Vh bh Q'v, V(bh) = {
def . . . 3
e Vh< H: next(h)= mm{z/h <:< Hb¢ V}

e Vh>1: previous(h) L naz {z/l <1< h,b €V}

H ifbg e VUGY

def : LT ~
e by, = the last reached node in branch b; L = { previous(H) if by € V

o Vh:by @V, let © = V(by); then:

E(h) ! {y adjacent to z/ thereis no k < h such that b, = y or by = gy,
there is no k > h such that k& < nezt(h) and by = 7}

VeeV, first(e) ¥ min{i/l <i< H b =z or b, =gz}

o reached(b) = {z € V/F < H,b, = z}

In Figure 1 we present the pseudocode for main loop of the Ahmad method as modified
in [MR88]. We use the function Backtrack, shown in Figure 2; this routine is used to start
the search for a new branch when either there’s a finished branch or there’s no possibility to
finish the branch under construction.

Instead of looking at the evolution of the single current branch b, we can consider, as in
[Ahm82], that the algorithm constructs a tree T with node set VUV UGV and root s, in the
following manner. There will always be a current branch of 7' in construction, identical to the
current b. When b grows by the addition of a symbol, the corresponding branch of 7' does
the same. When a “backtrack” happens, a branch b = (by,...,bk-1,7,...) is transformed
into (by,...,bk-1,7); in T, the current branch gives birth to a new one, having the first k — 1

nodes in common and ending in 7.

331

H ;
L:=1;
R :=0.0;
Partition_Completed := false;
repeat
do cases
case (by € IC) and (K C reached(b)) /* b is a finished branch #/

R:=R+P(b)
b= (by,...,bg_1,bx);
case (bg € K) and (# of by in b = degree(by))
/* b can’t give rise to a finished branch */

Backtrack,
otherwise
do cases
case E(L)={y,..} #0 —b:=(b, y);
H:=H+1;
L= H,
case E(L) =0 — ¢ := previous(first(V(br)));
do cases
case 1 # 0 — z:=V(b;); b:=(b, gz);
H:= H+1,
= H;
case 1 = 0 — Backtrack;
endcases
endcases
endcases
until Partition_Completed;

return R,

Figure 1: Pseudo-code for Ahmad method

332

j=maz {i/l <i<L,b &V,EG)#0}

do cases
case 7 = 0 — Partition_Completed := true;
case j # 0 — k := nezt(y);

y = V(be);
b= (b, ., bk_1,7)
H:=k;

L := previous(H);
endcases

Figure 2: Pseudo-code for the Backtrack routine.

The algorithm backtracks when, in the current branch b, the communication betﬁeen the
nodes of /U cannot happen. It looks for a node z with a non empty E set to continue the
process, that is, to build a new branch in 7. If such a node z exists, it is represented in b by
the symbol gz (g as in growing). When this is no longer possible, the algorithm ends. If a
new branch of the tree is built from a node z in position A of b, the new node y introduced

in the tree is chosen from the elements of E(A).

4 Numerical results and conclusions

The algorithm thus developed was implemented and incorporated as a basic functionality
of the HEIDI tool. HEIDI is the prototype of a tool for communication network reliability
analysis and design [CRU95] [CRU92]. The tool includes reliability index evaluation by exact
and Monte Carlo methods, driven by a graphic interface. The user can also use this tool to
study the possibility of improving the network, by a simulated annealing search of alternative
configurations

We present here some numerical results obtained when testing the Ahmad algorithm in
the particular case of the evaluation of Ry, which is the case of interest for our work in the
HEIDI tool. We consider test topologies which have been previously used in related work: a

version of the well known “Arpanet” network [Col87] pictured in Figure 4; a model of a subset

333

of Montevideo’s optical fiber telephonic network [CRU92|, shown in Figure 3 (this topology is
the one in operation in 1992, and was manually designed by the national telecommunications

company); and the dodecahedron network [Har69] shown in Figure 5.

Figure 3: Montevideo’s telephone optical fiber network core

Figure 4: A version of the Arpanet

Topology VI TIEl] e Ry Nb. branches | time (sec.)
AntelMod 14 | 21 | 0.99 | 0.998906 10238 12
Arpanet 21| 26 | 0.99 | 0.997358 15667 20
Dodecahedron | 20 | 30 | 0.99 | 0.999979 5184000 2700

Table 1: Results of three test topologies.

In Table 1 we present the results, obtained in a SPARCstation 5. The first columns
identify the topologies, showing also the node set and edge set sizes. For the three topologies

we will consider that all edges are equally reliable, with common reliability . = 0.99; the

334

Figure 5: The Dodecahedron

method is independent of this choice (but for values of 7. too close to 1, there may be
numerical problems, related to the machine word size). We present then the computed
reliability Ry, and the number of branches that the method had to compute in each case.
Finally, we show the running time in seconds. As expected, the efficiency of the method is -
strongly dependent on the size of the considered network. In the first two cases, the execution
times are very small, showing the interest of using this exact evaluation method. The third
case shows an increase of computation time, which may be significative if the evaluation
1s to be conducted in an interactive setting such as the HEIDI tool, leading to the use of
other methods (such as Monte Carlo simulation) which can give an approximation of the true

reliability in shorter times.

References

[Ahm82] S.H. Ahmad. A simple technique for computing network reliability. IEEE Tr.
Reliability, R-31(1):41-44, April 1982.

[AJ87] S.H. Ahmad and A.T.M. Jamil. A modified technique for computing network
reliability. JEEE Tr. Reliability, R-36(5):554-556, December 1987.

335

[Balg6]

[Col87]

[CRU92]

[CRU9S]

[Har69]

L.S86]

[MRSS]

[Rub94]

336

M.O. Ball. Computational complexity of network reliability analysis: An overview.

IEEE Trans. Reliab., R-35(3):230-239, August 1986.

C.J. Colbourn. The Combinatorics of Network Reliability. Oxford University Press,
New York, 1987.

H. Cancela, G. Rubino, and M. E. Urquhart. Optimization in communication
network design (text in Spanish). In Proceedings of the XIII CILAMCE (Iberian-
Latin-American Congress of Computational Methods in Engineering), Porto Alegre,
Brasil, November 1992.

H. Cancela, G. Rubino, and M.E. Urquhart. Evaluation and design of communica-
tion networks. In Proceedings of the ICIL’95 (International Congress on Industrial
Logistics, Ouro Preto, Brazil, December 1995. University of Southampton, UK, and
Naval Monterrey School, USA.

F. Harary. Graph Theory. Addison-Wesley, 1969.

M.O. Locks and A. Satyarayana (editors). Network reliability — the state of the
art. IEEE Trans. Reliab., R-35(3), 1986.

R. Marie and G. Rubino. Direct approaches to the 2-terminal reliability problem. In
E.Orhun E.Gelembe and E.Bagar, editors, The Third International Symposium on
Computer and Information Sciences, pages 740-747, Cesme, Izmir, Turkey, 1988.

Ege University.

G. Rubino. Tutorial: Efficient evaluation of network reliability. In 7th. Conference

on Modeling Tools and Techniques, Vienna, Austria, 1994.

